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Abstract—In this report, we investigate the theory and ap-
plications of quantum decoherence. We explore the additions
decoherence makes to the standard quantum theory and discuss
the problems it hopes to address, namely, the problem of definite
outcomes and the problem of a preferred basis. From these
proposed solutions, we discuss how the decoherence theory
can positively and negatively affect interpretations of quantum
mechanics. Finally, we examine the effect of decoherence on the
reliability of quantum gates used in quantum computing circuits.

I. INTRODUCTION

The study of quantum mechanics focuses largely on en-
tanglement and correlations between different components of
a system. Until relatively recently, quantum systems under
study were usually analyzed as closed systems (much like how
classical systems are often analyzed), with negligible outside
interference. However, recent developments - especially the
growth of quantum computing - have highlighted the inade-
quacy of this "closed system" assumption. Modern quantum
computers struggle to maintain qubit state coherence for time
scales on the order of 10 µs [1]. "Open system" representations
are proving to be much more realistic models of quantum
systems, with the environment around an observed system
being taken heavily into consideration.

Decoherence is the theory that describes the results of this
environmental inclusion; the "quantum coherence" of a system
"’leaks out’ into the environment" [2]. The environment is
modeled to have an immense number of degrees of freedom,
rendering any information transferred to it as effectively "lost".
Therefore, interaction with the environment results in the
reduction of information directly accessible by measuring
the system. Mathematically, decoherence theory models a
quantum system S as being correlated with an apparatus A
(originally in the "ready" state |ar〉) and the environment E
(originally in the state |e0〉):

(∑
n

cn |sn〉
)
|ar〉|e0〉 →

(∑
n

|sn〉|an〉
)
|e0〉

→
∑
n

cn|sn〉|an〉|en〉
(1)

Physically, decoherence can be represented as in Figure 1,
with environmental particles like photons "becoming cohered"
with the system. The time scale of this interaction is extremely

small. For example, using Equation 10 in [2], Zurek calcu-
lates that a small macroscopic system (mass of 1 gram and
separation of 1 cm) at laboratory conditions would have a
decoherence time scale on the order of 1040 times smaller
than the relaxation time, a characteristic time of the system.
Therefore, "even if the relaxation time was of the order of
the age of the universe, τR ∼ 1017 sec, quantum coherence
would be destroyed in τD ∼ 10−23 sec" [2]. This shows that
for macroscopic systems, environment-induced decoherence
effects are extremely fast; this speed, along with the factors
we discuss in Section II.A below, lead to the emergence of
classical behavior.

Fig. 1. Decoherence can be represented by interaction of environmental
particles e with a quantum system S

In quantum computing, environmental interaction is mod-
eled as a unitary operation U between the "relevant" system
density operator ρ and the generic environment density op-
erator ρE , as shown in Figure 2. Decoherence, or the loss of
information from the relevant system, occurs because the large
number of degrees of freedom of the environment render the
output environment operator ρE′ effectively unknown.

Fig. 2. In quantum computing, loss of information due to environment-
induced decoherence is represented by a unitary operator U



Now, we have multiple perspectives on decoherence and its
effects. Using these, we will investigate how it can benefit
quantum mechanics as a whole, influence diverse interpre-
tations of quantum mechanics, and describe how quantum
circuits perform in noisy environments.

II. BENEFITS OF THE DECOHERENCE PROGRAM

To quantum computing researchers, decoherence likely
holds a negative connotation as environmental noise poses a
challenge for robust physical realization of quantum circuits.
However, the theory provides strong solutions to problems
within the standard quantum mechanical formalism - here we
discuss the problem of definite outcomes and the problem
of the preferred basis, and the solutions to these problems
proposed by decoherence.

A. The Problem of Definite Outcomes

A challenging question any interpretation of quantum me-
chanics must address is the problem of definite outcomes. We
know that a quantum system can be represented by a super-
position of states, but when we measure classical observables,
we see classical, or "definite", outcomes and not superpositions
of multiple possible results. However, we also know that the
quantum system is not represented by a classical ensemble
where we simply do not know the underlying state until it is
revealed through measurement. Experiments where we observe
the effects of a superposition of states, such as the double slit
experiment with electrons, disprove the possibility of such a
classical ensemble describing the underlying quantum state
[3]. Why then, can we observe only definite outcomes of
quantum systems, and not superpositions of multiple results?

Decoherence addresses this issue by including interactions
with the environment into analysis of quantum systems. For
a generic quantum state |ψ〉, we can describe the system as
a density matrix ρ of the form ρ = |ψ〉 〈ψ|. In general, ρ
can have off-diagonal "interference" elements that represent
possible non-classical outcomes. When environment-induced
decoherence is introduced to the system, these interference
terms quickly dissipate, diagonalizing the density matrix. The
remaining diagonal terms can be interpreted as classical prob-
abilities of definite outcomes, answering the question posed
above.

To see this more clearly, we present the density-
matrix formalism given by Schlosshauer [3]. Without taking
environment-induced decoherence into account, the density
matrix describing a state S interacting with an apparatus A
is given by:

ρ̂SA =
∑
mn

cmc
∗
n |sm〉 |am〉 〈sn| 〈an| (2)

where ci are constants, |si〉 are bases of the quantum
system under study and |ai〉 are bases of the apparatus. Note
that this matrix representation contains off-diagonal quantum
interference terms where m 6= n. Terms along this diagonal
(m = n) represent the classical probabilities of definite
outcomes of the system.

When we consider the decoherence effects of the environ-
ment, the density matrix becomes:

ρ̂SAE =
∑
mn

cmc
∗
n |sm〉 |am〉 |em〉 〈sn| 〈an| 〈en| (3)

where the basis states of the environment |ei〉 are added.
Since the environment has so many more degrees of freedom
than the system, we consider the "local (or reduced)" [3]
density matrix that is found by taking the partial trace of
ρ̂SAE with respect to the environment, effectively ignoring all
irrelevant degrees of freedom:

ρ̂SA = TrE

(
ρ̂SAE

)
=
∑
mn

cmc
∗
n |sm〉 |am〉 〈sn| 〈an| 〈en|em〉

(4)
While the states of environment |ei〉 are not necessarily

orthogonal by definition, several exact physical models have
shown that, due to the many degrees of freedom of the
environment, decoherence effects cause the basis states to
become approximately orthogonal after a very short time [3].
Therefore, because 〈en|em〉 ≈ δnm, the density operator after
the system undergoes decoherence is given by:

ρ̂SA
t−→ ρ̂dSA ≈

∑
n

|cm|2 |sm〉 |am〉 〈sn| 〈an| (5)

The approximate orthogonality of the environment states
causes one of the summations to drop out, leaving only the
terms where m = n. This diagonalized density operator
contains only the classical probabilities of definite outcomes,
and does not have any off-diagonal interference terms. Thus,
only definite outcomes can be observed from this system;
which definite outcome is observed depends on what quantum
mechanical interpretation you use for the collapse of the
wavefunction.

B. The Problem of a Preferred Basis

Another problem with the general formalism of quantum
mechanics is known as the problem of the preferred basis.
The problem exists generally as follows:

If we model a given quantum system S (that we would
like to measure) as being in a composite state SA with an
apparatus A, then it takes on a state of the form∑

n

cn|sn〉|an〉 (6)

where |sn〉 and |an〉 form bases of S andA, respectively [3].
This correlation between the system and the apparatus seems
at first glance to do what we want - it seems that performing
a measurement using the apparatus and seeing what "pointer
state" |an〉 it collapses into would tell us what state |sn〉 our
system collapses into as well. The problem of the preferred
basis is that, in the common case, the state in Equation 6
holds for multiple bases of S; in other words, the outcome
of the measurement would hold for multiple, non-commuting
observables, and we do not know what basis of S we measured



in. This is fundamentally troubling, as it suggests we cannot
learn what we want about our system.

One of the biggest reasons for decoherence’s wide presence
in recent discussions of quantum mechanics is because the pre-
ferred basis problem is naturally mitigated when decoherence
is included in our model of a system.

As discussed in Section I above, decoherence includes
the environment surrounding a system in the model of that
system. We take these environmental effects into account by
transforming Equation 6 into:∑

n

cn|sn〉|an〉|en〉 (7)

where |en〉 are states of the environment [3], which were
previously assumed to be orthogonal because of the large
number of degrees of freedom.

The inclusion of |en〉 allows for the application of the
Tridecompositional Uniqueness Theorem [3], which states that
if a composite system can be written in Schmidt form across
three spaces (like Equation 7), then that form is unique.
However, justification must be given for why Equation 7
is a valid form for the system’s state, as the environment
can have an enormous number of different possible states;
this justification comes from the "einselection" (environment-
induced superselection) [2] the environment imposes on the
possible bases.

Einselection of a basis can be thought of in multiple
different ways. Zurek states that the preferred basis is one
that “contains a reliable record of the state of the system" [2];
Schlosshauer explains that "it’s the basis in which the system-
apparatus correlations |sn〉|an〉 are left undisturbed by the
subsequent formation of correlations with the environment (the
stability criterion)” [3]. In other words, if the system-apparatus
composite state SA in a given basis can transform into the
form of Equation 7 upon interaction with the environment,
it implies that the SA state in that basis was robust to that
environmental interaction. Any other possible (non-preferred)
basis would not survive the new environmental correlations.
Mathematically, there will be some Hamiltonian HSA↔E that
describes how the environment will interact with our specific
SA (we have to determine that using our knowledge of
this specific system and the nature of the interactions the
environment will have with it). We can then find projection
operators (PA) onto the eigenbasis of A that commute with
that Hamiltonian ([HSA↔E , PA] = 0) [2].

This einselection can also be discussed in more physical
terms; Schlosshauer [3] provides an example. Consider a
quantum system with various energy states, and the gap
between the different energy states is greater than the max-
imum energy the environment could nominally provide to
the system. In this case, einselection will select the energy
eigenstates as the robust or stable basis; we can thus build
an apparatus to measure this system along an energy-based
observable. Different systems with different environmental
interaction Hamiltonians could lead to the ability to perform

measurements on different bases, observing other classical
outcomes like position eigenstates instead.

Given this superselection, we’ve established Equation 7 as a
valid form for the post-decoherence state of our open quantum
system and thus have a unique basis of S along which to
measure.

III. CONSEQUENCES FOR QM INTERPRETATIONS

A topic that we find quite interesting, and that Schlosshauer
addresses heavily [3], is the potential for the decoherence
theory to change the landscape of interpretations that exist
for how the formalism of quantum mechanics applies to our
universe. These interpretations largely focus on how the "mea-
surement problem" is solved - how states of superpositions
lead to classical, definite outcomes. There are a number of
interpretations - standard/Copenhagen, modal, relative-state,
pilot-wave, and a number of others - and decoherence could
play a fundamental role in their feasibility, inter-operation, or
potential demise.

Schlosshauer describes ways decoherence could potentially
interact with the interpretations; here, we paraphrase them and
provide examples of the interaction.

1. Decoherence could remove the need for certain inter-
pretive additions to quantum mechanics. Often, the greatest
detractors of quantum mechanical interpretations focus on the
additions the interpretations need to make to the quantum
mechanical formalism in order to "work". Decoherence can
be seen as extending the reach of the formalism to bring
us closer to explaining the classical outcomes we observe
without deviating in any way from the formalism. Relative-
state theories (explained more thoroughly in 4 below) have
a similar goal and therefore can be inclined to adhere to the
decoherence program; the success of decoherence could lead
to the success of those types of more naturally-arising theories,
directly reducing the scope of interpretive additions necessary.

2. Decoherence could protect an interpretation from
empirical disproof. An example of this comes in physical
collapse theories, which include the presumption of additional
fundamental physical processes ("reductions") that lead to
superpositions evolving into classical, determinate states over
time. These theories predict evolution equations that are ex-
tremely similar to those established through the decoherence
theory. Because decoherence has been thoroughly experimen-
tally confirmed, this similarity in their evolution predictions
allows for a protection of physical collapse theories from
empirical disproof, at least temporarily.

3. Decoherence could disprove a currently-feasible in-
terpretation. Opposing 1 and 2 above, decoherence as an
extension of the quantum mechanical formalism could render
interpretations impossible in reality. The Copenhagen inter-
pretation is likely a victim of this. Copenhagen takes the
"standard" theory that wavefunction collapse is an exception
to an otherwise unitary-driven time evolution, and additionally
supposes that "classicality is not to be derived from quantum
mechanics" [3]. In addition to breaking from the majority of
established physical theories, this hypothesis of some sharp



disconnection between microscopic and macroscopic physics
is much less feasible when decoherence effects are considered.
Quoting Schlosshauer once more, "it is reasonable to anticipate
that decoherence... could lead to a complete and consistent
derivation of the classical world from quantum mechanical
principles." The results from theoretical and empirical review
of decoherence effects point towards the absence of a clear-
cut quantum-classical boundary. If the theory garners more
success, the Copenhagen interpretation will fade away more
than it already has.

4. Decoherence could "physically motivate" currently
abstract assumptions made by interpretations. This helps
boost an interpretation’s feasibility, as physically motivated
ideas obviously outshine ad hoc assumptions. Relative-state
theories, which invoke a "branching" or "splitting" mech-
anism to explain how one classical outcome is observed
upon measuring a state in a superposition, benefit from this
motivation. These theories include commonly referenced ones
like the many-worlds interpretation (MWI). The branching or
splitting in a theory like MWI explains definite outcomes, but
requires the problem of the preferred basis to be solved in
order to identify the basis along which that branching occurs.
These theories therefore benefit from decoherence because
einselection effectively solves that problem, allowing for the
assumption of an environment-selected basis in which the
branching can occur.

IV. APPLICATIONS TO QUANTUM CIRCUITS

To connect the theory of quantum decoherence to quantum
computation, we looked at the 2019 study from A. Ash-
Saki et al. [4]. In this work, the authors investigate the
impact of environment-induced decoherence on quantum cir-
cuits through simulations that model different quantum noise
effects. They show that the quantum gate in question, the
choice of quantum noise model, and the input state all affect
the resilience of the system to decoherence effects.

Instead of using the operator-sum representation to model
the evolution of their quantum systems, Ash-Saki et al. employ
the so-called "master equation", given as:

dρ

dt
= − i

h̄
[H, ρ] +

∑
j

[2LjρL
†
j − L

†
jLjρ− ρL†jLj ] (8)

where the Lj are the Linbald operators which describe the
interaction between the system and the environment [4]. This
form of the master equation is appropriately called the Linbald
form, and describes how the density matrix ρ changes over
time due to the Hamiltonian H and the Linbald operators Lj .

As the system evolves, environment-induced decoherence
effects cause it to vary from its original state. To quantify this
change, the authors use fidelity, which is defined by Nielsen
and Chuang [5] as:

F (ρ, σ) ≡ Tr
√
ρ1/2σρ1/2 (9)

Using this metric, if two states ρ and σ are identical their
fidelity F (ρ, σ) = 1. If instead the two states are orthogonal

their fidelity F (ρ, σ) = 0. The fidelity shown on the vertical
axis of the plots below compares the initial state of the system
to the state of the system after decoherence effects have
decayed the initial state. Ash-Saki et al. discuss two different
quantum noise models in their study, amplitude damping and
phase damping [4], and we explore these effects below.

A. Amplitude Damping

We use amplitude damping as a general model for the loss
of energy of a quantum system to environmental noise. This
effect is modeled by the following Linbald operator:

Lamp =
√
γ

[
0 1
0 0

]
(10)

where γ is a time constant of the system, the rate of
spontaneous emission [4]. This operator acts on a single qubit,
and we can see from its matrix form that on a state in
the computational basis, Lamp decays |1〉 components to |0〉
components. This effect can be seen in Fig. 3 below for input
state |110〉.

Fig. 3. Amplitude Damping with Input State |110〉. From Ash-Saki et al. [4]

Operations performed with each gate lose fidelity over time
as energy dissipates to the environment and the portions of the
state in the |1〉 direction rotate towards the |0〉 direction.

This trial also demonstrates the effect of the choice of gate
on the system’s fidelity over time. Take for example the CNOT
gate given by the red curve in Fig. 3. This gate takes the first
qubit of the state as the control qubit and flips the second
qubit if the control qubit is |1〉. In this case, for the input
state |110〉, the first (control) qubit is |1〉, so the CNOT gate
flips the second qubit from |1〉 to |0〉, giving the state |100〉.
Because amplitude damping only acts on |1〉 components and
the CNOT gate removed a |1〉 from this state by making the
transformation |110〉 → |100〉, amplitude damping has the
least effect on this transformed state when compared to the
other gates’ outputs, since there are fewer |1〉 components in
the final state. Fig. 3 reinforces this result as the CNOT gate
has the smallest fidelity loss of all the gates studied.

In contrast, if the input state were |100〉, as in Fig. 4, the
CNOT gate would make the transformation |100〉 → |110〉
and, due to the increase of |1〉 states, we expect greater fidelity
loss.



Fig. 4. Amplitude Damping with Input State |100〉. From Ash-Saki et al. [4]

This effect is shown clearly in Fig. 4, as the blue CNOT
curve decays more quickly than any other gate, and much more
quickly than it did in Fig. 3 where the input state was |110〉.

B. Phase Damping

To model quantum decoherence effects that do not draw
energy from the system, we use phase damping instead of
amplitude damping. The Linbald operator for this quantum
noise model is given by:

Lphase =
√
λ

[
1 0
0 −1

]
(11)

where λ is a constant that defines the strength of the
damping effect [4]. Phase damping has an effect similar to the
theoretical model of decoherence we discussed in section II.A
above, in that it eliminates the off-diagonal interference terms
of the density operator. This makes the duration of the effect
potentially finite, as once the off-diagonal terms decay to 0,
phase damping no longer changes the state. This can be clearly
seen in Fig. 5 below. For several gates, including the CNOT
gate discussed previously, fidelity loss happens very quickly
and does not decrease after a certain point. This corresponds
to complete diagonalization of the density operator and the
emergence of classical probabilities.

Fig. 5. Amplitude Damping with Input State |110〉. From Ash-Saki et al. [4]

Phase damping also demonstrates that the choice of gate
has an impact on the change in fidelity of the system. For

some gates that initially diagonalize the state, as shown by the
blue line in Fig. 5, phase damping has no effect since there
are already no off-diagonal interference terms. Other gates
that flip single qubits between basis states, such as CNOT
and Toffoli (control not with two control bits), show rapid
fidelity loss until the state is diagonalized, after which no
change occurs. Finally, the Hadamard gate, which creates a
uniform superposition of basis states, will constantly create
interference terms as the system evolves, and never become
fully diagonalized. This is also clearly shown by Fig. 5, as the
black line representing the Hadamard gate decays consistently
throughout the time period, unlike the other gates studied.

V. CONCLUSIONS

Quantum decoherence presents a robust framework for
analyzing quantum systems when environmental effects are
considered. In the context of the quantum mechanical for-
malism, it provides solutions to long-standing problems; in
the context of quantum computing, it provides an obstacle for
researchers to overcome.
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