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Abstract
Formal verification is a promising field of open research
which has potential to change the way we build distributed
systems. It does not eliminate bugs from system design, but
rather reduces the scope of potentially buggy code from the
entire implementation to a small declarative description of
the protocol. Debugging techniques are thus still required to
catch bugs in protocol descriptions. Model checking is one
approach to verifying that protocols guarantee certain proper-
ties, but is limited by state-space explosion for protocols with
infinite domains.

As a step toward overcoming this limitation, we have im-
plemented Dafinite: a software prototype which generates
a finitized state transition system from a protocol descrip-
tion written in a subset of the Dafny programming language.
We have tested Dafinite by implementing buggy descriptions
for two distributed protocols and using a model checker to
generate counterexamples that demonstrate violations of the
systems’ safety properties.

1 Introduction

The design and implementation of distributed systems is noto-
riously difficult. Even with the most experienced developers
and testers, subtle bugs can go undetected and affect systems
in production. This has led to an increased interest in the for-
mal verification of distributed protocols and their implemen-
tations. With formal verification, developers write a protocol
description for their system in a language like Dafny [7], and
automated tools and theorem provers determine whether or
not a corresponding implementation of the system satisfies the
protocol [5]. With a formally verified program, a developer
may be confident that their system implements their protocol
correctly even before the code is run for the first time.

Despite its benefits, formal verification is not a magic bullet
that eliminates bugs from the system development process.
Rather, it significantly reduces the amount of code which a
developer must check for bugs. Instead of needing to inspect

and test thousands of lines of systems code, the developer
must only look for errors in the protocol specification, which
is often multiple orders of magnitude smaller than the corre-
sponding implementation.

The question remains, then, how to debug protocols which
do not actually describe a system where the desired properties
hold. A powerful candidate for this process is model checking.
Model checkers can take as input a description of a state
transition system and a set of properties to check. Using
powerful tools such as Satisfiability Modulo Theories (SMT)
solvers, the model checker can either prove or disprove that
the desired properties hold in the system. In the event of a
disproof, they often output a sequence of state transitions
which demonstrate a violation of a given property, called a
counterexample.

A fundamental limitation of this approach is the exponen-
tial growth of the state space as a system scales. It is not
computationally feasible for a model checker to prove proper-
ties on systems with infinite domains, which many distributed
protocols have. Consider a relatively simple lock server dis-
tributed system, where each server has a single semaphore
and may establish a "link" with exactly one client at a time
(the safety property). The protocol description permits an ar-
bitrary (even infinite) set of client and server nodes, making it
impossible for a model checker to verify the system’s safety
property in the general case.

However, consider a finite instance of the lock server sys-
tem described above with a single server and two clients. This
is the smallest instance of the system which could meaning-
fully violate the safety property, and is sufficiently small for
a model checker to verify. If there was a bug in the Dafny
code and the model checker detected a resulting violation of
the safety property in the finite instance, the counterexample
would be extremely useful for understanding the problem and
debugging the protocol.

As a first step in the direction of enabling the use of model
checkers for debugging distributed protocol descriptions writ-
ten in Dafny, we have implemented Dafinite: a prototype of a
finitization module within the Dafny compiler which gener-
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ates a finitized version of the state transition system in VMT
format [3]. The module currently supports a limited subset of
Dafny language features, including the membership operation
for sets of user-defined datatypes. To demonstrate the value of
such a tool, we wrote descriptions of two simple distributed
protocols in Dafny (the lock server described above and two-
phase commit), inserted various bugs, and used the Averroes
model checker [6] to generate counterexamples which demon-
strated violations of the safety properties caused by the added
bugs.

2 Related Work

IronFleet [5] represents the current state-of-the-art methodol-
ogy for formal verification of large-scale distributed system
implementations. In the IronFleet approach, the implementa-
tion and proof of a system is divided into layers: the specifi-
cation layer, a high-level state machine which describes all
possible allowable behaviors of the system; the protocol layer,
which introduces the concept of independent hosts commu-
nicating via exchange of messages; and the implementation
layer, an imperative program which implements the protocol.
Verification proceeds by proving that the protocol correctly
refines the specification and the implementation correctly re-
fines the protocol. Dafinite generates a finite instance of a
protocol layer state machine.

I4 [8] makes the use of formal verification more accessible
by automating the derivation of an inductive invariant for
a system. The inductive invariant is a property that must
be true under all states of the system and is closed under
a transition relation. It is a critical part of the verification
step of IronFleet. Finding this invariant is a challenging task
which typically requires expertise and a deep understanding
of the protocol. I4’s key observation is that as the size of a
system grows, its inductive invariant grows in size but not
generally in complexity. As such, it generates a finite instance
of a protocol description written in IVy [9], uses a model
checker to find an inductive invariant for the finite instance,
and performs a series of iterative steps to attempt to generalize
the invariant to an infinite system. I4’s translation script for
finitizing IVy protocols served as an important starting point
for our understanding and approach.

The VMT format [3] is an extension of SMT-LIBv2 [1], a
library for standardizing theories and input/output languages
for SMT solvers. It is designed to support representation of
symbolic state transition systems. State variables have two
representations: their "current" and "next" values. Both are
created via a declare-fun and linked with a special annota-
tion :next. Their initial values may be constrained in a spe-
cial predicate function describing the allowable initial states
of the system, annotated with :init. The state transition
function is specified by annotating a predicate with :trans.
Safety properties for the system, which can be verified by
model checkers as described above, are special predicates

annotated with :invar-property. Support for Linear Tem-
poral Logic (LTL) liveness properties also exists in VMT,
though our prototype only permits users to specify safety
properties in their Dafny protocols.

3 Design

Dafinite’s design closely resembles the IVy finitizer in I4 [8]
and reuses logic from it where applicable.

Dafny is a Turing complete language, capable of represent-
ing arbitrary real-world distributed protocol implementations.
In its current state, Dafinite imposes strict semantic and stylis-
tic constraints on the Dafny files it can finitize. The enforced
style follows a similar style presented for the specification
and protocol layers of the IronFleet methodology [5]. Use
of predetermined style and naming conventions simplified
iteration over the program’s Abstract Syntax Tree (AST) and
enabled us to design and implement a prototype that works
end-to-end for a subset of Dafny’s language features.

3.1 Input Constraints
In the protocol being finitized, each object which has a po-
tentially infinite domain (e.g., clients and servers in the lock
server protocol) must be represented as a Dafny datatype.
The state of the system consists of the members of these
datatypes (e.g. Server.semaphore, of type bool), as well
as a special “id” field used to distinguish instances of
each object. A special, all-encompassing datatype called
DafnyState must be defined, and its members must be the
arbitrarily-sized sets of the datatypes to be finitized (e.g.,
DafnyState.clients, of type set<Client>).

The possible state transitions must be described by Dafny
predicates (single-expression boolean functions) whose
names have the prefix “Action” and take two DafnyState
arguments corresponding to the system state before and after
the transition. If and only if the predicate is true, then it is
possible for the state machine to transition from the previous
state to the next state via that action. Listing 1 provides some
example pseudocode for a connect "event" in the lock server
example.

A few special Dafny predicates must also be defined. Init
must specify the restrictions on the initial state of the system.
Next must be a disjunction of all of the Action predicates,
thereby forming a single predicate representing all possible
state transitions. Safety must specify the system’s desired
safety properties, whose unconditional truth will become the
goal of the formal verification.

Lastly, while support for arbitrary Dafny expressions and
types (including sequences and maps) are the goal for this tool,
we could only implement a subset of language features due
to time limitations. As we demonstrate in our evaluation, this
subset is sufficient for implementing some basic protocols,
but more flexible support and fewer restrictions on Dafny
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developers are desirable. A more extended discussion of the
current features and limitations of Dafinite are included in
Section 6 and our style guide.

// Example instance declaration
datatype Server=(semaphore)
datatype Client=(connectedServers)
datatype DafnyState=(clients , servers)

// Example transition for system
ActionConnect(prev_state , next_state)
{

exists client c and server s such that
in prev_state:

s.semaphore is true
and
in next_state:

s.semaphore is false
and
s in c.connectedServers

}

Listing 1: Pseudocode for the lock server, including type
declarations and an example transition.

3.2 Finitization
In the invocation of Dafinite, just as in the invocation of
I4’s IVy finitization, the user must provide a finite instance
count for each of the defined datatypes in the Dafny protocol
(e.g. “Client=2,Server=1”). These finitized-domain sizes
are matched with the corresponding datatypes parsed out of
the Dafny file to instantiate the appropriate number of each
datatype. Dafinite then parses the Init, Next, Safety, and
each of the action predicates, recursively breaking down com-
plex expressions and outputting the equivalent logic in VMT.

Universal quantifiers (forall) are replaced with an ap-
propriate conjunction over each instance of the finitized do-
main, and existential quantifiers (exists) with an appro-
priate disjunction. Taking the lock server with two clients
and one server as an example, consider the logical statement
"there exists some client c and server s such that c holds
the semaphore of s." The presence of the quantifier intro-
duces uncertainty that may make the problem undecidable
for a solver. However, in the finitized version of the protocol,
this logic can be expressed in decidable first-order logic as
s0 ∈ c0.connectedServers∨ s0 ∈ c1.connectedServers.

To implement finite sets of user-defined datatypes, we in-
stantiate a boolean state variable to represent each object’s
membership in its set. For example, in a finite instance of the
lock server protocol with n servers, each client would have
n state booleans indicating membership of each server in its
set of connected servers. This design leads to some difficulty
supporting more complex set operations like subset, superset,
union, intersection, and difference, and our prototype stops
short of this. Our initial goal was to use the array theory

supported by VMT and Averroes’ underlying SMT solver
(MathSAT5 [2]) to represent sets, using finitized datatypes as
array indices and booleans as values to represent membership,
but we could not determine how to properly constrain the
initial values of state arrays in VMT. We thus opted for our
current solution as a means to support set membership, as we
found it to be a critical language feature for implementing
basic protocol descriptions. We encourage future work to re-
visit this decision and investigate methods for constraining
the initial values of arrays, as we believe array theory would
greatly facilitate support for additional set operations, as well
as other datatypes like sequences and maps.

4 Implementation

Dafinite is implemented with around 700 lines of C# code
integrated into the Dafny compilation and verification code-
base. This allows it to reside in the same C# namespace as
the Dafny parser, giving direct access to a program’s AST.
Invoking Dafinite is done by simply adding a few arguments
to the existing command line call used to compile and verify
a Dafny file. For example, compiling and verifying a lock
server protocol in lock_server.dfy is done by calling

dafny lock_server.dfy

and creating a finitized version with one server and two clients
and printing to lock_server.vmt is done with

dafny lock_server.dfy /vprint lock_server.vmt
/finitize:Server=1,Client=2

5 Evaluation

We implemented two distributed system protocols in Dafny:
the simple lock server described above and two-phase commit.
These protocols were implemented in the format described
previously, which we found to work well. For each of the tests,
we used Dafinite to finitize the protocol, then used the model
checker Averroes [4, 6] to determine if the finite instance of
the protocol violates the system’s desired safety properties.
The following sections describe each of the protocols, as well
as bugs we injected to test the model checker’s utility as a
protocol debugger, in more detail.

5.1 Lock Server
The lock server system consists of clients and servers.
Servers maintain a boolean representing the state of a
semaphore (lock), and clients maintain the set of servers
whose semaphores they "hold". The safety property for this
system is "no two clients can have a link to (i.e., hold the lock
of) the same server at the same time" [8]. We implemented
a description of this protocol in 80 lines of Dafny. Listing 1
includes some pseudocode for the lock server protocol.
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We used Averroes to confirm that the safety property held
for small instances of the protocol. After verifying the correct-
ness of our protocol description, we added bugs to the Dafny
code and checked that (i) Averroes correctly determined that
the safety property could be violated and (ii) the counterexam-
ple it produced could be used to understand why the protocol
was buggy. For the lock server, we performed this test with
two separate bugs:

1. We removed the requirement for a Connect action that
the semaphore of the server being connected to is not
held in the starting state. Removal of this requirement al-
lows a client to connect to a server while its semaphore is
held by another client, which violates the safety property.

2. We removed the requirement for a Disconnect action
that the involved client and server are connected in the
starting state. Removal of this requirement allows clients
to release a semaphore they did not hold. This can lead
to a violation of the safety property if a client incorrectly
"releases" a server’s semaphore while it is held by an-
other client, and another client subsequently connects to
that server.

Averroes was able to detect that both of these changes could
lead to a violation of the safety property, and in each case pro-
vided a sequence of state transitions that demonstrated how
the safety property could be violated. Listing 2 provides an ex-
ample of such an execution when bug 1 is present. (Note that
the state variables ClientX_connectedServers_ServerY
correspond to the booleans representing set membership as
explained in Section 3).

initial state:
Server0_semaphore=true
Client0_connectedServers_Server0=false
Client1_connectedServers_Server0=false

Inputs transformed:
action -> connect

state:
Server0_semaphore=false
Client0_connectedServers_Server0=false
Client1_connectedServers_Server0=true

Inputs transformed:
action -> connect

state:
Server0_semaphore=false
Client0_connectedServers_Server0=true
Client1_connectedServers_Server0=true

safety property violated

Listing 2: Model checker simulation of a lock server system
with two clients and one server after inserting bug 1 into the
protocol description.

5.2 Two-Phase Commit

Two-phase commit is an atomic commit protocol where a
collection of processes must come to a unanimous decision
to commit or abort. The system consists of a coordinator pro-
cess (omniscient in our protocol) and a collection of voting
processes (participants). The participants each send a vote to
either commit or abort to the coordinator, and the coordinator
decides based on the votes and sends its decision to the partic-
ipants. The safety properties for this system are as follows: (i)
all processes reach the same decision, (ii) the decision cannot
be reversed, (iii) the decision is to commit only if all processes
vote yes, and (iv) the decision must be to commit if there are
no failures and everyone votes to commit.

We implemented a description of this protocol in 250 lines
of Dafny. As with the lock server, we used the model checker
to confirm that the safety properties held for a finitized version
of the protocol before injecting bugs and ensuring Averroes
could produce a counterexample which would help debug the
protocol. For two-phase commit, we added the following bugs
to the Dafny:

1. We allowed processes to commit before receiving a de-
cision from the coordinator. This can violate correctness
because a voting process can prematurely commit before
everyone has voted yes, meaning another process could
have voted no and aborted.

2. We allowed processes to choose to either commit or abort
after receiving a commit decision from the coordinator.
This can violate correctness because after receiving a
commit decision, nodes would have the right to choose
the decision, meaning some nodes may commit and some
may abort.

As before, Averroes successfully detected that these
changes could lead to a violation of the safety properties
and provided a sequence of state transitions that demonstrated
such a case. We omit an example of the model checker output
for this protocol due to space constraints.

5.3 Debugging with a Model Checker

Over the course of the project, we found utilizing the model
checker as a protocol debugger to be an extremely valuable
tool. The detailed simulations outputted by Averroes helped
us to see exactly how safety properties may be violated in the
presence of certain bugs. In fact, the model checker revealed
to us that our initially "correct" Dafny description of the lock
server protocol actually contained bug 2 described above! We
were able to utilize the counterexample to quickly locate the
bug and fix our protocol, demonstrating the utility of model
checking as a debugging technique.
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6 Future Work

While we have demonstrated the feasibility of finitizing Dafny
protocols, work remains to develop Dafinite into a robust and
flexible tool for supporting formal verification of distributed
systems. Currently, Dafinite is restrictive in the required for-
matting of state machine descriptions. In particular, it requires
a single, high-level, "omniscient" view of the system state
(i.e., the DafnyState type) where the Next predicate is a
disjunction of the action predicates. Other approaches to writ-
ing protocol descriptions are more common and provide real
benefits to the underlying solvers and theorem provers, so
increasing the flexibility of our tool would be a useful step in
removing restrictions from developers who want to use it.

The most critical avenue of future work that should be prior-
itized is the expansion of Dafny language features supported
by Dafinite. Currently, the tool is limited to relatively simple
boolean logic and set membership for sets of user-defined
objects finitized by the tool. As discussed in Section 3, we
believe a move from enumerated boolean state variables to
arrays would greatly facilitate the addition of support for ad-
ditional set operations, sequences, and maps. The primary
problem to solve in order to achieve this is properly constrain-
ing the initial values of state represented by arrays in the
underlying VMT format. We believe support for some other
important features, including linear integer arithmetic, would
require substantially less work. We chose to omit it from our
initial prototype solely due to time constraints and its absence
from the protocols we used to evaluate our prototype. Dafi-
nite also cannot currently parse non-predicate functions. A
complete list of Dafinite’s current capabilities and limitations
is contained in the style guide in our repository.

Additionally, Dafinite does not currently include support
for specifying liveness properties. We prioritized safety prop-
erties for our prototype due to time constraints, but VMT does
support annotation of LTL properties (see Section 2) and we
believe it may be feasible to use model checkers to verify
them in a similar manner.

Finally, reducing redundant logic in the VMT written by
the tool would greatly simplify the output file and improve
readability. While this is not critical for the technical correct-
ness of the tool, it may improve scalability and performance
when generating larger protocol instances. Additionally, while
VMT is not designed with human readability in mind, manu-
ally parsing the file can be a necessary evil when debugging
changes to Dafinite.

7 Conclusion

In this paper we introduced Dafinite, a tool for generating
finite instances of distributed protocols written in the Dafny
programming language. These instances are of immense value
as they mitigate state-space explosion and thus permit the
use of model checkers to debug protocol descriptions. We

implemented descriptions of two simple distributed protocols
in Dafny and found that Dafinite, in combination with a model
checker, was extremely valuable for identifying and fixing
errors. Future expansion of Dafinite and support for additional
Dafny language features would increase its value and make
it an effective tool in the development of formally verified
distributed systems.
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